A Ddvv Inequality for Submanifolds of Warped Products
نویسندگان
چکیده
We prove a DDVV inequality for submanifolds of warped products of the form I ×a Mn(c) where I is an interval and Mn(c) a real space form of curvature c . As an application, we give a rigidity result for submanifolds of R×eλt Hn(c). RÉSUMÉ. Une inégalité de type DDVV pour les sous-variétés des produits tordus. Nous donnons une inégalité de type DDVV pour les sous-variétés des produits tordus de la forme I ×a Mn(c) où I est un interval et Mn(c) un espace modèle réel de courbure constante c. Nous en déduisons un résultat de rigidité pour les sous-variétés de R ×eλt Hn(c). Version francaise abrégée. Soit (M, g) une variété riemannienne immergée isométriquement dans une variété riemannienne ambiante (N, ḡ), de dimension m + p. Lorsque N est un espace modèle simplement connexe à courbure sectionnelle constante c, l’inégalité suivante est vérifiée : (1) ||H|| > ρ+ ρ⊥ − c, où ρ = 2 n(n− 1) ∑ i<j 〈R(ei, ej)ej , ei〉 est la courbure scalaire normalisée de (M, g) et ρ⊥ = 2 n(n− 1) ∑
منابع مشابه
Application of Hopf's lemma on contact CR-warped product submanifolds of a nearly Kenmotsu manifold
In this paper we consider contact CR-warped product submanifolds of the type $M = N_Ttimes_f N_perp$, of a nearly Kenmotsu generalized Sasakian space form $bar M(f_1, f_2, f_3)$ and by use of Hopf's Lemma we show that $M$ is simply contact CR-product under certain condition. Finally, we establish a sharp inequality for squared norm of the second fundamental form and equality case is dis...
متن کاملOn the DDVV conjecture and the comass in calibrated geometry (I)
In this paper, we proved the first non-trivial case of the DDVV conjecture. Namely, for all 3 × 3 matrices, the DDVV inequality is valid. We also classified all the minimal submanifolds for which the equality holds.
متن کاملContact CR-warped product submanifolds in generalized Sasakian Space Forms
In [4] B. Y. Chen studied warped product CR-submanifolds in Kaehler manifolds. Afterward, I. Hasegawa and I. Mihai [5] obtained a sharp inequality for the squared norm of the second fundamental form for contact CR-warped products in Sasakian space form. Recently Alegre, Blair and Carriago [1] introduced generalized Sasakian space form. The aim of present paper is to study contact CR-warped prod...
متن کاملLegendrian Warped Product Submanifolds in Generalized Sasakian Space Forms
Recently, K. Matsumoto and I. Mihai established a sharp inequality for warped products isometrically immersed in Sasakian space forms. As applications, they obtained obstructions to minimal isometric immersions of warped products into Sasakian space forms. P. Alegre, D.E. Blair and A. Carriazo have introduced the notion of generalized Sasakian space form. In the present paper, we obtain a sharp...
متن کاملMicrosoft Word - art_Andreea_Olteanu_RJM-CS_final
Recently, the author established a general inequality for doubly warped products in arbitrary Riemannian manifolds [14]. In the present paper, we obtain a similar inequality for doubly warped products isometrically immersed in S-space forms. As applications, we derive certain obstructions to the existence of minimal isometric immersions of doubly warped product integral submanifolds in S-space ...
متن کامل